
The Perl Journal ■ Winter 2001 www.tpj.com ■ 1

Unidecode!
Sean M. Burke

I’m holding out but not getting an answer.
I want to do right by you.
But I’m finding out that cheating gets it faster.

— Jimmy Eat World, “Get It Faster”

Back in the days, the Latin-1 character set was the de facto
standard for the Internet. It was just Latin letters plus a few
accents, and that was enough for most of the Western

European languages, but it left a whole lot of other languages out
in the cold to try to make do with mutually incompatible encodings.
Now, we have Unicode, a single character set that can encode all
the world’s languages, whether they’re written in accented Latin
letters, like Icelandic or Vietnamese or Navajo, or in some quite dif-
ferent script, like Greek, Armenian, Chinese, Cherokee, or Hindi,
to name a few.

In an ideal world, all computers, applications, operating sys-
tems, and protocols would have all the fonts and support for turn-
ing Unicode data into correctly formatted text on the screen. But
the real world is stubbornly less than ideal, and for a very long time
we will still have to deal with some systems that can’t reliably show
much more than US-ASCII. To cope with that fact, I wrote a Perl
module called Text::Unidecode, which takes Unicode text using
any writing system, and tries to convey it using just US-ASCII.
This article is about how complicated that task can be, how it
should have taken me years — and how I actually managed it in
just a few days.

Basics of Different Scripts
To explain why I made Text::Unidecode work the way it does, I

need to describe some basic principles of world writing systems.
Dealing with all the writing systems in Unicode has made me
appreciate that while they are all superficially quite different, they
are mostly just variations on a few basic themes.

Most writing systems basically work on this plan:

• Figure out the sounds in what you’re trying to express.

This sometimes involves some arbitrary decisions — such as
what to do when a word’s pronunciation can change freely (like the
fact that “heat” has a “t” sound its own, but put an unstressed vowel
after it as in “heat up a bagel” and it sounds like “heed”). Most writ-
ing systems, however, end up settling on these points without much
bother and often without any conscious thought.

• Possibly toss out distinctions that aren’t crucial.

Here, written English tosses out the distinction between stressed
and unstressed syllables (so you can’t see the difference between a
cold com-press, and having to com-press data). Written Latin
tossed out all distinctions between stressed and unstressed vowels,
and between short and long. And Hebrew just usually tosses out its
vowels altogether. And if you’re Cherokee, you toss out all the
information about what tones you have in a word, and also toss out
some sound distinctions, like between /k/’s and /g/’s.

• Group sounds according to some consistent scheme.

This might mean just breaking between the words, or it might
consider where the syllables stop and start, or it might mean both
these things.

• Write that out.

This might mean going from a sound to a symbol one at a time
and without appeal to context. Or it might involve some context, as
with Spanish, where you have to figure in Spanish, “well, I want a

2 ■ www.tpj.com The Perl Journal ■ Winter 2001

/k/ sound, and I’d normally write that c, but it’s going before an /i/
sound here, so I need to write it as qu instead” (as in “Quito”, the
city). Or it might mean figuring (as with Japanese kana and
Cherokee syllabics) “this whole syllable is /ki/” and looking up the
way to write that syllable, in the chart of all possibly whole sylla-
bles.

• Have the computer encode it.

Since we’re talking about computer text, we also have an addi-
tional step: when you “write out” what you mean, by moving your
fingers over the keyboard, the computer eventually saves it to disk
in some encoding. Surprisingly, the same character on the screen,
could be represented in fundamentally different ways, in different
encodings.

A good example of this process, in a non-Western writing sys-
tem and its encoding, is Divehi, the language spoken (and written)
in the Maldives, an archipelago southwest of India. Divehi is writ-
ten right-to-left, with vowels written as marks over or under the
consonants. The word “divehi” itself (the Divehi word for
“Divehi”!) illustrates how this works.

• Figure out the sounds of what we’re writing.

The word we’ve expressed is represented phonetically as /dive-
hi/.

• Possibly toss out distinctions that aren’t crucial.

Divehi writing doesn’t distinguish stressed syllables from
unstressed syllables. But it does happen to distinguish 10 different
vowels.

• Group the sounds together.

We note word breaks, since we’ll represent those as whitespace
later. But more importantly, we group the word’s sounds into sylla-
bles. /divehi/ becomes three syllables, /di/ /ve/ /hi/.

• Write that out.

We write right-to-left, writing each consonant on the baseline,
and each vowel as a symbol above it or below it:

e
H V D
i i

Note that the sound /e/ is represented by a mark that looks like a lit-
tle “c”, and which goes over the consonant that starts that syllable.
This works fine for syllables that are just a consonant and a vowel,
but what about consonants and vowels elsewhere? The word for
“that” is just /e/, and how is it written? Divehi wisely uses a place-
holder here: a letter that stands for the lack of a preceding conso-
nant.

e
X

(Here we represent the placeholder consonant in our ad hoc roman-
ization as X.)

When a consonant doesn’t begin a syllable (as with the /n/ in
/ran/, the word for “gold”), it’s given a placeholder vowel, which
appropriately looks like a little zero:

0 a
N R

You can even get words where every syllable has a placeholder
of some sort, as in /ain/ (meaning “a school of fish”): it’s broken
into /a/, /i/, and an extra /n/; the first two get a placeholder conso-
nants, and the last bit gets a placeholder vowel:

The Perl Journal ■ Winter 2001 www.tpj.com ■ 3

0 a
N X X

i

Now, there are 10 vowels in the language plus the placeholder 0 for
null vowel; and there are 23 consonants plus the placeholder X for
null consonant. So in the above system, there’s a maximum of 11 *
24, or 264 possible written syllables. We could make an encoding
based on 264 codepoints (i.e., slots in the character set), where we
encode each whole syllable at once. This way makes sense because
that’s how they’re drawn on the screen, so when you want to draw
the di in the word divehi, the di is encoded as just a single code-
point, and you fetch the font character for that.

An alternative is to save each element (as d is, and as i is) as a
character on its own, in a character code of its own. This is useful
in that it reflects how you type, a letter at a time; and if you want
to change an element, you shouldn’t have to re-key the whole syl-
lable, but should be able to just hit delete and change one element.

It so happens that Unicode’s representation of Divehi (in the
character codes 0x0780 to 0x07B0) is the latter: divehi is repre-
sented not as a character di, a character ve, and a character hi; but
as six characters:

0x078B = Divehi letter "d"
0x07A8 = Divehi letter "i"
0x0788 = Divehi letter "v"
0x07AC = Divehi letter "e"
0x0780 = Divehi letter "h"
0x07A8 = Divehi letter "i"

Don’t let the issue of writing direction here confuse you: a file con-
sisting just of the word “divehi” would start with the byte sequence
for “d” and end with the byte sequence for “i”. The fact that Divehi
is written “backwards” is just a matter for display on the screen;
Unicode doesn’t make an issue of this, and encodes things “in log-
ical order”, as it’s called. (The reader is invited to consider whether
all alternatives are illogical orders.)

So if someone emails you in Divehi saying simply “ran!”
(“gold!” — maybe it’s a grizzled prospector staking claim there in
the Indian Ocean), that would be encoded as five characters:

0x0783 = Divehi letter "r"
0x07A6 = Divehi letter "a"
0x0782 = Divehi letter "n"
0x07B0 = Divehi letter null vowel
0x0021 = Exclamation mark

In an ideal world, you’d get that email, and when it made its way
to your mail program, it would look like this:

But unless your mail program (and its OS) knows how to deal with
Divehi — which includes having the fonts, knowing how to com-
pose the vowels over/under the consonants, as well as going right
to left, then you’re more likely to see this:

????!

If that’s all we can see, we’re left wondering what on Earth is meant
by email consisting of an inscrutable four-character word and an
exclamation point. Or, maybe the programmer of the mail program
was clever, and he has his program show undisplayable characters
using their character codes:

[0783][07A6][0782][07B0]!

4 ■ www.tpj.com The Perl Journal ■ Winter 2001

While this doesn’t exactly lose any information, it doesn’t really
blaze with significance either, unless we have a Unicode character
chart on hand. I do have a Unicode character chart — but since it’s
the size and weight of a large Encyclopedia Britannica volume, it’s
a bit hard to imagine keeping it “on hand” wherever you go.

If we’re using a system that can’t handle all of Unicode, that
maybe can’t be trusted with anything but US-ASCII, it’d be nice if
instead of “????!” or “[0783][07A6][0782][07B0]!”, we could just
see the Divehi word expressed in Latin letters, as plain old “ran!”.
That’s what I wanted Text::Unidecode to do. And if only all the
world’s scripts were as simple as Divehi seems so far, then writing
Text::Unidecode would have been barely a few day’s work. But it
turns out that not even Divehi is really as simple as that.

When the Going Gets Messy, The Messy Turn
Pro

Writing a program to “parse” Divehi characters and spit out
Roman letters (what we in the biz call “transliteration”) seems mer-
rily simple so far. But it gets stranger.

Previously, I said that there are 264 possible written syllables in
Divehi, 11 * 24, 11 for the 10 vowels plus the null vowel, and 24
for 23 consonants plus the null consonant. The astute reader might
have realized that this includes the possibility of a syllable consist-
ing of a null consonant and a null vowel. And, a syllable consisting
entirely of a placeholder consonant for a placeholder vowel seems
the sort of thing that could never actually happen. Sometimes, how-
ever, things that don’t actually occur are allowed to exist in code
tables so that there aren’t any gaps in the lookup grid that says “this
consonant plus this vowel makes this displayable pair”. But the
shocking truth is that the Divehi written syllable consisting of null
consonant plus null vowel actually does occur — in fact it has two
meanings. This is where things get messy.

The first meaning of this null syllable is to express a sound that
has no letter of its own: the glottal stop sound. English has this
sound between the two vowels in the interjection “uh-oh!”; but in
Divehi it occurs in normal words, like “bo’”, which means “frog”,
or “hurihâkame’” which means “everything” — although it may
seem ironic that the word for everything ends in a double nothing:

0 e a ‚ u
X M K H R H

i

The second meaning of the null syllable, is to make the following
consonant last longer. Long consonants (“geminates” in linguistic
jargon) are pretty rare in English; the closest we come is the dou-
ble-t sound in “cat tail”. But they’re common in many languages
(Italian, Finnish), and come up plenty in Divehi, in words like “ba-
ppa” (“father”) or “ta-yyâ-ru” (“ready”):

u ‚ 0 a
R Y X T

Now, a program that reads the Unicode encoding of this (taX0y‚ru)
should presumably turn it into something like “ta-yyâ-ru”, doubling
the following consonant (here, a “y”). And where the X0 syllable
occurs at word-end, it should be replaced by some good symbol for
the glottal stop sound. The apostrophe will do for that, since it’s not
otherwise in use in Divehi script.

Another way to express this idea, is that X0 and a consonant
should turn into two of that consonant (X0y to yy); other X0s should
turn into an apostrophe; and otherwise X and 0 just delete. This is
a snap for regexps:

s/X0(\w)/$1$1/g;
s/X0/'/g;
s/(\w)/$Divehi2roman{$1}/g;

The Perl Journal ■ Winter 2001 www.tpj.com ■ 5

...except that we can go use the real Unicode characters:

\x{0787}\x{07b0} is "X0", the null syllable
\p{InThaana} is \w for just Divehi characters
("Thaana" is the official name of the Divehi script)
See perldoc perlre for more about \p{...}

s/ \x{0787} # the null consonant
\x{07b0} # the null vowel

(\p{InThaana}) # and some letter
/$1$1/gx;

s/\x{0787}\x{07b0}/'/g;

s/(\p{InThaana})/$Divehi2roman{$1}/g;

Then we just make sure we’ve filled out %Divehi2roman with
things like:

...
"\x{0786}" => "k", # Divehi "k" => Roman "r"
"\x{0787}" => "", # Divehi null consonant => nullstring
"\x{0788}" => "v", # Divehi "v" => Roman "v"
"\x{0789}" => "m", # Divehi "m" => Roman "m"
...
"\x{07A6}" => "a", # Divehi short a => Roman "a"
"\x{07A7}" => "A", # Divehi long a => Roman "A"
"\x{07A8}" => "i", # Divehi short i => Roman "i"
"\x{07A9}" => "I", # Divehi short I => Roman "I"
...
"\x{07b0}" => "", # Divehi no-vowel => nullstring

This constitutes a full working transliterator program, built from
three regexps and one hash1, which does a fine job of turning
Unicode text in Divehi into US-ASCII. The fact that the Divehi, in
proper script, would have been written right to left, with vowels
superimposed on the preceding consonants, doesn’t show up in the
Unicode representation, so our program doesn’t need to deal with
it.

As we consider doing the same for the dozens of other scripts in
Unicode, we face the unpleasant news that Divehi, for all this
strangeness with null syllables, is uncommonly straightforward as
writing systems go. What took three regexps for Divehi (after a bit
of research), could take a dozen for Hindi (which is partly like
Divehi, but partly not). As for Thai, the transliterator would have to
guess at syllable and word boundaries, since Thai doesn’t normal-
ly mark them (yesitallrunstogether!). However, you need to know
where they are in order to know which way to transliterate some
characters.

And it gets worse. My Library of Congress ALA-LC
Romanization Tables reference for Arabic goes on for pages and
pages. It notes, for example, that one character (Unicode 0x0629,
called “teh marbuta”, which looks oddly like a “ö” is to be translit-
erated as “h” when it’s on nouns that are indefinite or preceded by
a definite article, or as “t” when it is on construct state nouns, or as
“tan” when it’s an adverb suffix. I have not the faintest idea what
the “construct state” is or how to identify it, or how to tell an indef-
inite noun or an adverb from any other kind of word in Arabic. I am
rather sure, however, that it cannot be done with a mere regular
expression, and that is not something I say lightly!

In short, it was looking as if producing a system that could take
Unicode text and spit out US-ASCII romanization, was going to
involve phenomenal amounts of work. Some scripts are simpler
than Divehi, but many are much more complicated. The situation I
was facing is exactly the sort of thing that programmers have in
mind when they talk about the “eighty-twenty rule”.

The Eighty-Twenty Rule
With writing systems and computer encodings of them, things

are pretty straightforward most of the time, but still manage to get

6 ■ www.tpj.com The Perl Journal ■ Winter 2001

a bit messy some of the time, and very messy every now and then.
Most of the problem can be treated with a cheap hack or two, but
to deal with the rest of the problem, you have to write code that is
longer and introduces whole new levels of complexity into your
program. In other words, to pick some favorite arbitrary numbers,
you can deal with 80% of the problem by writing only about 20%
of the code (or expending 20% of the time or effort) that it would
take to treat the whole problem.

A non-linguistic example of this is parsing addresses out of
“From:” lines in email headers. This is a notoriously and pointless-
ly hard task to do “by the book” (where “the book” is RFC 2822).
However, a quick look at my mail spool file shows that you get
57% of the addresses parsed correctly if you just look for lines
matching the pattern From: Their Name <user@host>, with a fair-
ly constrained idea of what can be in user or host. There can be no
spaces, no parens, no backslashes, no quotes, no \@’s or anything
else that actually is RFC2822-legal. Add quotes to that pattern, as
in From: "Their Name" <user@host>, and you get another 25%.
Another 11% is gained by From: user@host, and it’s sharply
diminishing returns from there. From: user@host (Their Name)
is another few percent, and after that it’s off into hard-to-parse and
mercifully rare things like From: Pete(A wonderful \) chap)
<pete(his account)@silly.test(his host)>.

So, if you can make do without total coverage, your time is
probably better spent with just a simple regexp to match the most
common formats. Although generally, your time is best spent skim-
ming CPAN and the Perl FAQ first, to see whether someone’s done
all the work for you already. For problems where that method does-
n’t turn up anything, you must decide whether you can get away
with a quick hack that does most of the work. Doing something by
the book is almost always the right thing to do for keeping the code
maintainable, extensible, and debuggable. But if doing the right
thing means the job will take impossibly long, then it may be time
to look into doing the wrong thing.

This is exactly the situation I faced when writing
Text::Unidecode; I figured out that many scripts (like Cherokee,
Amharic, Greek, Coptic, Cyrillic, Armenian, Georgian, Yi, and
Korean hangul, to name a few) were almost no problem at all, and
could be translated a character at a time by looking in a hash that
said that thus-and-such Cyrillic character is to be represented by
“b”, thus-and-such Cherokee glyph is to be represented everywhere
by “la”, and so on. Some scripts, like Divehi and the dozen Indic
scripts (Hindi, Bengali, Telugu, Burmese, etc.), could probably be
tackled by a few regexps, with some recourse to advanced regexp
features such as lookahead assertions. But, it gets tricky — as the
Indic scripts get odder, I probably would be able to learn enough of
the language to make sense of its writing system in just a few days.
But it would take a serious investment of time, for each of these
languages, to learn the language well enough to know whether my
transliteration algorithm was doing something wrong.

As I considered going toward harder scripts like Thai and
Chinese, and then on to really hard (but also really important) writ-
ing systems like Japanese, Hebrew, and Arabic, it looked as though
each would require at least months (and probably years) of effort. I
like writing open source software, and I like learning languages,
but any project that would require me to become literate in Arabic,
Hebrew, and all the major languages of Asia clearly needed some
scaling back. If nothing else, by the time I finished this (i.e., in the
distant future), Unicode would probably finally be well supported,
at which point few people would need anything like
Text::Unidecode.

One way to tackle this would be to do what I could with the
more straightforward writing systems (Cyrillic, etc.), then look for
existing algorithms for the harder languages (e.g., using some of

The Perl Journal ■ Winter 2001 www.tpj.com ■ 7

the great work that’s already been done toward automatic analysis
of Japanese), and encourage friends and friends-of-friends to write
algorithms for the languages they personally know well. (This
alone would cover a good six or seven main languages of India.)
But this would still leave great big gaps; I would run into a good
number of languages (probably including Georgian, Syriac, Coptic,
and Mongolian Old Script) where I would be unable to find anyone
to advise me and texts in Unicode to test my transliterator against.
In short, doing the right thing either alone or collaboratively would
either take a long time, or still be shoddy, or both.

So, I decided that what was feasible was a (relatively) quick
hack — a transliteration algorithm whose view of things was inher-
ently too simple to work right, but which would still work well
enough most of the time, and which could still be done in a rea-
sonable amount of time. That would mean that I’d have time to
cover all of Unicode. People could (and will!) still produce smart
transliterators for any language that they wanted done properly, but
Text::Unidecode could take up the slack.

Internals of Text::Unidecode, and Surveying
the Damage

I decided that Text::Unidecode should be just a wrapper around
this one operation:

s/([^\x00-\x7f])/$Unicode2Ascii{$1}/g;

This simply replaces every character above 0x007F with
$Unicode2Ascii{that character}, without any regard to the con-
text. This approach kept Text::Unidecode from being about com-
plex rules formalized as dozens of regexps, and made it just about
considering each Unicode glyph and guessing the one best way to
transliterate it. That worked just fine for “straightforward” scripts
(Greek, Cherokee, Cyrillic, etc.), but let’s consider how that works
for Divehi.

We figured out the null consonant X and the null vowel 0 are, by
themselves, basically just placeholders, and the only reason they’re
needed is because in Divehi you can’t have a vowel on its own or a
consonant on its own. That would make us want to say that the
%Unicode2Ascii entry for each should just be “”, an empty string.
But then the special pair X0 (meaning glottal stop, or meaning to
double the next consonant) would disappear without a trace, and
baX0pa, boX0, and taX0yIâru would come out as “bapa”, “bo”, and
“tayAru”; whereas we’d prefer something more like “bappa”,
“bo’”, and “tayyaru”.

After much consideration, I decided that the way to do this, for
context-insensitive Text::Unidecode, would be to have the null
vowel 0 just delete, but have the null consonant X be replaced with
an apostrophe. To illustrate:

Input in Divehi letters Unidecode output
divehi divehi
ranX ran
baX0pa ba’pa
boX0 bo’
taX0y‚ru ta’yAru
Xe ’e
XiXa ’i’a

My criterion here was that I tried to imagine not whether someone
who knew no Divehi could make sense of a single word in this tran-
scription, but whether someone who did know Divehi could make
sense of several sentences of this. I figured that while the above
system produces the completely superfluous apostrophes in “’e”
and “’i’a”, people will not see any clear meaning for them. They
will see that if you ignore those apostrophes, the word (“e” or “ia”)

8 ■ www.tpj.com The Perl Journal ■ Winter 2001

makes sense in context. In cases where the apostrophe is what’s left
of an X0 as in “bo’” and “ba’pa”, people should be able to infer its
function(s) from context. And after a line or two, it will probably
dawn on the Divehi reader that the apostrophe is just a stand-in for
the Divehi letter for null consonant.

This means people may have a bit of work to do the first time
they see Text::Unidecode output, but it’s always work to read text
in an alphabet that you’re not used to reading it in. In cases where
the output actually gets a bit mangled, people will have a harder
time, but people are generally pretty good at figuring out what
things mean from context, even if it’s distorted. In any case, it’s
always better than the entire message being visible only as “????
??? ???? ?????? ?? ???? ????” or as hex character codes.

Indic scripts are a good example of how something a bit more
complex still generally survives the mayhem of Text::Unidecode’s
algorithm. Indic scripts are basically (in the encoding) like Divehi,
except that vowels don’t need a null consonant, and you don’t both-
er writing the short “a” vowel. So, if you have a consonant that has
no vowel (or no null-vowel!) after it, it must have an “inherent”
(implicit) short /a/. So, for example, in the Malâyalam script, the
word “malâyalam” is encoded, as mlyâlm0. (The final 0 null vowel,
really character 0x0D4D, is there to keep the final m from being
read as “ma”.) A context-sensitive algorithm could insert “a” char-
acters as appropriate, but my Text::Unidecode one-context-fits-all
approach has to have one representation for the Indic m codepoint,
in spite of the fact that sometimes it means “m” and sometimes it
means “ma”.

I observed that most of the time, Indic script m means just “m”,
not “ma”, suggesting that I should transliterate it as “m”. For the
cases where it really did mean “ma”, people would usually be able
to infer that something was missing, and then be able to imagine
what it was. So, if you spoke Malâyalam and you saw a word like
“mlyaalm” in Roman script, you would know that “mly” wasn’t a
possible way to start a word in your language, and you’d infer that
something was missing. Context, or even the barest knowledge of
the normal written form of the language, would lead you to infer
that it’s an “a”.

Conversely, if I had decided that Indic script m should be repre-
sented as “ma”, mlyâlm0 would come out as “malayaaalam”.
That’s only slightly strange, but it’s very bad for syllables with dif-
ferent vowels. For example, the personal name Abhijît is encoded
as aBijît0. If we assume every consonant has no “inherent a” (so m
is “m”, not “ma”), then that comes out “abhijiit”, or “aBijiit”,
depending on how we decide to Romanize the “special b” — as
“B” or as “bh” (I settled on the latter, since it’s more standard). But
if we decided that every consonant did have an “inherent a” (so m
is “ma” not “m”), aBijît0 comes out as “abhaijaiita”, which is far
afield of how anyone thinks of it or pronounces it. The grand les-
son here is tht if y lv lttrs ot, ppl cn stll make sense of it, but ifa
yaou gao araounada inasaeratainaga laetataerasa, the result is pret-
ty confusing. This rule bodes well for Text::Unidecode output for
Arabic and Hebrew, where the normal written form of the language
is missing vowels.

The Special Chinese Problem
Most of what I’ve written so far assumes that each Unicode

symbol has pretty much one or two closely related pronunciations,
which we then pick from based on context. This assumption falls
apart when we get to Korean, Japanese, and Chinese — the lan-
guages that use Chinese characters (or “Han” characters, in
Unicode jargon). Consider, for example, this character, Unicode
0x4E0B:

The Perl Journal ■ Winter 2001 www.tpj.com ■ 9

If the text is in Korean, this character will be pronounced “ha”,
and should probably be transliterated as such. If it appears in
Chinese text, a Mandarin speaker will pronounce it “xia”, and a
Cantonese speaker will pronounce it “ha”. If that character is in a
Japanese text, it will be pronounced as “shita”, “shimo”, “moto”,
“ka”, or “ge” — and which it is, depends on complex contextual
factors.

In Text::Unidecode’s table of what transliterates as what, there
is no allowance for any kind of context, even contextual guesses
about what language the text is in. I had on hand the “Unihan data-
base” that says what the pronunciations are for most of the Chinese
characters in Unicode, for all the languages that use each particular
character — and I could pick only one pronunciation per character.
Somebody had to lose. These are the things I considered:

• More people speak Chinese than Japanese.
• More people speak Japanese than Korean.
• Of people who speak Chinese, most can understand Mandarin

pronunciations, as it’s the national standard dialect of mainland
China.

• The Korean and Japanese pronunciations are often derived from
the Chinese pronunciations. It rarely if ever went the other way.

• A Japanese or Korean person is more likely to have studied
Chinese (meaning modern spoken Mandarin), than a Chinese
person is to have studied Japanese or Korean.

• If the Japanese, Korean, and Mandarin pronunciations are rather
different, there is a small chance that a Japanese or Korean read-
er will be able to understand the Mandarin pronunciation, but
nearly no chance that a Chinese person will be able to understand
the Korean or Japanese pronunciations.

• Most importantly, if you take the Mandarin pronunciations as the
standard, then context-insensitive transliteration of Chinese text
works almost perfectly. Japanese needs more context sensitivity,
and if you take the most common Japanese pronunciation as the
standard, context-insensitive transliteration of Japanese text
doesn’t work very well.

In other words, if I took Mandarin as the canonical pronunciation
for Chinese/Japanese/Korean Unicode characters, it’d do pretty
well for a whole lot of text for a whole lot of people. If I chose
Japanese as the canonical pronunciation, it’d work less well, and
would be good for fewer people. While Text::Unidecode is not nec-
essarily a majoritarian project, I do like to please the most people
while frustrating the fewest.

So, that’s why when you enter this:

use Text::Unidecode;
print unidecode(

"\x{5317}\x{4EB0}"
Those are the Chinese characters for the
name of the capital city of mainland China.

);

You get this Mandarin Romanization:

Bei Jing

Instead of Japanese or Korean attempts at transliterations of those
characters’ pronunciations (“Kita Miyako” and “Pwuk Kyeng”,
respectively).

Future Developments
I don’t think of Text::Unidecode as being the last word on the

subject of transliteration — not by a long shot. It’s a cheap hack
whose coverage of world languages is very broad but very very

10 ■ www.tpj.com The Perl Journal ■ Winter 2001

thin. It does pretty well with most alphabets, is so-so with Indic
scripts, and its solution to Chinese/Japanese/Korean isn’t good, but
is the least bad. I hope people will write smart transliterators for the
Indic scripts, Thai, Japanese, and whatever else they feel a need for;
and I hope they’ll put them in CPAN. But for whatever languages
are left over, you can always fall back on Text::Unidecode.

References
perldoc perlunicode [part of the standard Perl distribution]
Bruce D. Cain and James W. Gair. 2000. Dhivehi (Maldivian).

Lincom Europa (Munich).
Randall K. Barry (editor). 1997. ALA-LC Romanization Tables:

Transliteration Schemes for Non-Roman Scripts. Library of
Congress.

Jimmy Eat World. 2001. “Get It Faster”, Bleed American [Album].
http://www.jimmyeatworld.net

Nara Institute of Science and Technology, Computational
Linguistics Laboratory. 1997. ChaSen v1.0 [a morphological
analyzer for Japanese]. http://chasen.aist-nara.ac.jp/

Peter W. Resnick [editor]. 2001. RFC 2822: Internet Message
Format. http://www.rfc-editor.org/rfc/rfc2822.txt. [Obsoletes
RFC 822.]

Geoffrey Sampson. 1990. Writing Systems: A Linguistic
Introduction. Stanford University Press. [A must-read — SMB]

Rupert Snell. 2000. Beginner’s Hindi Script (Teach Yourself
Books). McGraw Hill NTC.

The Unicode Consortium. 2000. The Unicode Standard 3.0.
Addison-Wesley.

The Unicode Consortium. 2001. The Unihan Database v1.1.,
Unihan.txt in http://www.unicode.org/Public/UNIDATA/.

1. Incidentally, you may have noticed that while I’ve been representing long a’s
as “‚”, as in “hurihâkame’”, the above part of a %Divehi2roman would give us
a capital instead, as in “hurihAkame’”. Since Text::Unidecode is, apparently,
for use in systems that lack full Unicode support, I decided to play it safe and
assume that they don’t even have Latin-1 support either — so I use only US-
ASCII characters, involving no Latin-1 characters like “â”. In this case, since
there’s no uppercase/lowercase distinction in Divehi script, nothing on input
will give us an “A”, so we’re free to use that character for long a’s.

Sean M. Burke has a Master’s in linguistics from Northwestern University.

Modules Used
Text::Unicode

